| |
- bincoeff(...)
- Computes the binomial coefficient.
( n ) n!
( ) = --------
( k ) k!(n-k)!
Algorithm from 'Numerical Recipes in C, 2nd Edition' pg215.
- bspbezdecom(...)
- Decompose a B-Spline to Bezier segments.
INPUT:
n,p,U,Pw
OUTPUT:
Qw
Modified version of Algorithm A5.6 from 'The NURBS BOOK' pg173.
- bspdegelev(...)
- Degree elevate a B-Spline t times.
INPUT:
n,p,U,Pw,t
OUTPUT:
nh,Uh,Qw
Modified version of Algorithm A5.9 from 'The NURBS BOOK' pg206.
- bspdeval(...)
- Evaluate a B-Spline derivative curve.
INPUT:
d - spline degree integer
c - control points double matrix(mc,nc)
k - knot sequence double vector(nk)
u - parametric point double
n - nth derivative integer
OUTPUT:
p - evaluated points double matrix(mc, n+1)
Modified version of Algorithm A3.2 from 'The NURBS BOOK' pg93.
- bspeval(...)
- Evaluation of univariate B-Spline.
INPUT:
d - spline degree integer
c - control points double matrix(mc,nc)
k - knot sequence double vector(nk)
u - parametric points double vector(nu)
OUTPUT:
p - evaluated points double matrix(mc,nu)
Modified version of Algorithm A3.1 from 'The NURBS BOOK' pg82.
- bspkntins(...)
- Insert Knot into a B-Spline.
INPUT:
d - spline degree integer
c - control points double matrix(mc,nc)
k - knot sequence double vector(nk)
u - new knots double vector(nu)
OUTPUT:
ic - new control points double matrix(mc,nc+nu)
ik - new knot sequence double vector(nk+nu)
Modified version of Algorithm A5.4 from 'The NURBS BOOK' pg164.
|